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AIR FORCES AND MOMENTS ON TRIANGULAR AND RELATED WINGS WITH SUBSONIC
LEADING EDGES OSCILLATING IN SUPERSONIC POTENTIAL FLOW'

By CrariEs E. Warkixs and Jurran H. BEruaw

SUMMARY

This analysis treats the air forces and moments in supersonic
pefential fHlow on oscillating triangular wings and a series of
sireptback and arrow wings with subsonic leading edges and
supersonic tratling edges. For the wings undergoing sinusoidal
torsional oscillations simultaneously with vertical translations,
the linearized velocity potential is derived in the form of a power
series in terms of a frequency parameter. This method can be
useful for treatment of similar problems for other plan forms
and for wings urdergoing other sinusotdal motions. For tri-
angular wings, as many ferms of such a serieg expansion das
may be desired can be determined; however, the terms after the
first few become rery cumbersome.

(losed expressions that include the reduced fregquency to the
fifth power, an order which s sufficient for a large class of
practical applications, are given for the velocity potential and
for the components of chordwise section force and moment
coefficients.

These wings are found to exhibit the possibility of undamped
torstonal oscillations for certain ranges of liach number and
locations of the aris of rotation. The ranges of these parameters
are delineated for triangular wings.

INTRODUCTION

This report is concerned. with the derivation of expressions
for the velocity potential and associated forces and moments
for oscillating triangular wings in supersonic flow. The
boundary-value problem for the linearized velocity potential
for an apex-forward triangular wing oscillating in a super-
sonic main stream may be classified, according to reference
1. as “purely supersonic’ if the leading edges of the triangle
are outside the Mach cone emanating from the apex of the
triangle or “mixed supersonic” if the leading edges are inside
this Mach cone.

In the purely supersonic case the principle of independence
bolds; that is, the flow on the upper surface of the wing is
independent of the flow on the lower surface and vice versa.
Garrick and Rubinow (reference 1) have shown that the
boundary-value problem for the velocity potential in the
purely supersonic case can be satisfied by simple distributions
of sources with local strength proportional to the local pre-
scribed normal veloeity of the wing. Nelson (reference 2)
has treated the oscillating triangular wing for this case to the
third power of the frequency.

In the mixed supersonic case the principle of independence
does not hold. Boundary-value problems for lift-producing
wings in this case can be satisfied by distributions of doublets;
the relation between doublet strength and normal velocity
of the wing is, however, in general, not simple. The deter-
mination of this relation requires the solution of an integral
equation that employs the potential of a time-dependent unit
doublet as kernel and limits of integration that depend on
Mach number and wing plan form.

For treatment of problems that involve boundary condi-
tions that are independent of time—such as constant angle
of attack, constant rate of pitching, and so forth—the doublet
potential, employed as kernel of the integral equation, is
considered independent of time and in these cases the integral
equations for triangular wings can be solved by a straight-
forward process.

For treatment of problems of oscillating wings, however,
it is necessary to employ, as the kernel of the integral equa-
tions, & doublet potential that varies harmonically with time
and in this case the solution of the integral equation, gener-
ally, becomes very cumbersome. If the doublet potential or
kernel is expanded in terms of the frequency of oscillation,
however, use can be made of knowledge of solutions of inte-
gral equations for problems that are independent of time to
obtain an expanded form of solution for a wing undergoing
harmonic oscillations. Such a procedure was demonstrated
in treatments of rectangular wings in references 3 and 4.

The purpose of the present report is to make use of the
expanded form of the velocity potential to obtain the forces
and moments, based on the first few terms of this potential,
for a rigid triangular wing performing vertical and pitching
sinusoidal oscillations in mixed supersonic flow. Although
as many terms of the expanded poteniial as may be desired
can be obtained after the first few terms, the process becomes
very cumbersome. The flow normel to the leading edge is
subsonic but the flow normal to the trailing edge is considered
to be supersonic. This latter consideration implies that the
potential derived for triangular plan forms may be used to
calculate the aerodynamic forces and moments for other plan
forms that may be formed with the trienguler wing by cut-
ting the trailing edges so that they lie ahead of the Mach
cones emanating from their foremost points. " '

Other approaches to the solution of the problem of oscillat-
ing triangular wings have been given by Robinson (reference
5), Haskind and Falkovich (reference 8), and by Stewartson

1 Supersedes NACA TN 2457, “Air Forcesand 3Momeats on Trisngular and Related Wings With Subsonfe Leading Edges Oscillating In Supersonic Potential Flow™ by Charles E.

Watkins, 1951,
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(reference 7). In both references 5 and 6 formal solutions
to the problem were obtained in terms of special systems of
curvilinear coordinates. Robinson’s solution was given in
terms of a double summation of trilinear combinations of
Bessel functions of the first kind with Lamé functions of the
first and second kinds. Similarly, the solution of Haskind
and Falkovich was given in terms of summations of Bessel
functions of the first kind combined with elliptic integrals
of the first and second kinds. In both references 5 and 6 the
potentials were not reduced to useful forms for calculating
forces and moments.

In reference 7 Stewartson makes an interesting though
specialized use of the Laplace transformation to develop a
method whereby terms of the velocity potential for triangular
plan forms, expanded as herein, can be obtained. Stewartson
gives formulas that, except for errors presumably in printing,
can be used to develop the potential to the second power of
the frequency, but he omits many details in his derivation.

SYMBOLS
¢ disturbance-velocity potential
z,Y,2 rectangular coordinates attached to wing

moving in negative z-direction

£ rectangular coordinates used fo repre-
sent space location of doublets in
zy-plane

Zn function defining mean ordinates of any
chordwise section of wing such as
y=y; as shown in figure 1

wiz,y,b) vertical velocity at surface of wing along
chordwise section at y=1,

xg abscissa of axis of rotation of wing as
shown in figure 1

t time

h vertical displacement of axis of rotation

ko amplitude of vertical displacement of
axis of rotation, positive downward

a angle of attack

o amplitude of angular displacement
about axis of rotation, positive leading
edge up

K& fime derivatives of & and e, respectively

14 velocity of main stream

¢ velocity of sound

M free-stream Mach number (V/e)

p=VM*'—I :

w frequency of oscillations

S M

=T

k reduced frequency (bwo/V)

€ half apex angle

C=tan ¢

Gum represents functions of &, z, and M

wFn functions used to denote doublet distri-

bution functions

constants associated with D, depending
on gC
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APy, R, constants depending on §C

oy constants depending on 8C and M

2b root chord of wing

8 semispan of wing

c slope of ray passing through vertex of
wing

a.N,6,v dummy variables

p density

Ap local pressure difference

P - section force (total force at any spanwise
station)

L, L, L, L, components of section force coefficients

A, section moment (total moment about
z=1x, &t any spanwisc station)

Afy, M, AL, A, components of section moment coeffi-
cients

M, total component of damping-moment
coefficient

Po=ﬂ0

F' . E' complete elliptic integrals of the first

and second kinds, respectndv, with
moduli 41— pg*

ANALYSIS
BOUNDARY.VALUE PROBLEM FOR THE VELOCITY POTENTIAL

Referred to a rectangular coordinate system moving
forward at a uniform supersonic speed in the negative
z-direction (see fig. 1), the differential equation for the
propagation of small disturbances that must be satisfied by
the velocity potential is

2 62¢ aZ¢ a’¢
79 g9
c? (&“" v bz/ b:r’+ oy? ' ozt

The mein governing boundary condition to be satisfied by
the velocity potential is that the flow be tangent to the
surface of the wing or

(gj) —wz,y, )=V 3

where Z,, is the vertical displacement of any point of the wing.
For the particular case of a wing independently performing
smell sinusoidal pitching oscillations of amplitude « about
some spanwise axis z, and small sinusoidal vertical trans-
lations of amplitude &, the quantity Z,, in equation (2) is

Zn=e"'[af(z—2o)+h|=alz—zo)+h (3}

(See fig. 1 (b) for sketch showing instantaneous displacement
of section y=y,.) For convenience, the frequency of oscil-
lation of both pitching and translatory motion is denoted by
w. Considering these motions to occur at separate frequen-
cies would add no difficulties to the derivation.

Substituting the expression for Z, (equation (3)) into
equation (2) gives

w(zy,t)=Vata(x—z)+E (4)
Equation (4) implies that the velocity potential may be

(1)

0Z m
> (2)
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expressed as the sum of separate effects due to position and
motion of the wing associsted with individusal terms of this
equation, namely

¢=¢a+ ¢&+¢h (5)

DERIVATION OF ¢

In order to obtain the analytical expression for the
potential ¢, it is necessary to derive only one of the subsidiary
potentials appearing in equation (5), say ¢.. The other
subsidiary potentials ¢, and ¢; can then be obtained from
the derived expression for é. by simple comparison.
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In order to satisfy the boundary-value problem for ¢., a
convenient procedure is to start with the expanded form of
the potential of a uniform distribution of doublets. Then,
for a given power of the frequency of oscillation this poten-
tiel, as will be shown in the following analysis, can be
modified so that, when integration is made over the appropri-
ate region, the results satisfy the differential equation (1) to
the given power of the frequency and satisfy the condition
of tangential flow exactly. The type of doublet required
is that with its axis normal to the plane of the wing. The
potential of such a doublet may be obtained from the poten-
tial of a source, located in the plane of the wing, by partial
differentiation with respect to the direction normal to the
plane of the wing. Similarly, the potential of a distribution
of the required type of doublets can be obtained from a dis-
tribution of sources located in the plane of the wing.

The poteutial at (x,y,2) due to sources located at points
(&,2,0) in region r (illustrated in fig. 2) of the xy-plane which
satisfies the differential equation (1) may be written as

- e~ cos (=R
a=22(f - Gr )dEdn (6)
where
- Mo M
T
and

R=+(x—§—By—n)—B2*

1}.)’ /
d
/
/
e
/S
/
/S
//
/
/ )
0 RS &r
N
AN
N
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN

Fisurk 2.—8keteh illnstrating region of Integratlon for the velocity potentlsl
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Expanding the integrand of equation (8) into a power series in w, collecting terms with respeet to £, and differentiating the
resulting integral with respect to z gives the expanded form of the potential of a uniform distribution of doublets, namely

ti)D'—Vd : ff [aolR+aoeR+ - Faon R L L +E(a'”1—1?+a12R+ S FaRRE L )+ oot

xr Oz
o (anptaakt . . . Bt ) |dedn 1)
where
aul=(‘u;!)ne—‘;= (8)
and
(_ l)m—l( )2m -2 .
~(em—2)I\M (9)
For convenience in the succeeding discussion and analysis equation (7) may be written in the following form:
_T__‘g a ( 1)m—l E- 2m—2 J‘I‘ - ]
TP [“*‘f [frae dr+ 23 ooy 3) o ) EET T dEdy (10)

An interesting and significant property of equation (10) is that the coefficient of each power of £ satisfics the differential
]
equation (1) and has the form of a source potential with strength proportional to (Z—‘;’) e~ This property may be

shown by writing the coefficient of £" as follows:

e n T Grr) . =% (5 F)
( ) _‘“E[ e~taE— oog (11_ R)] ) (11)

A more general solution to equation (1) may thus be obtained by introducing properly chosen weight or distribution func-
tions (denoted by £DD,(£,7)) into the coefficients of £* in equation (10). Let this solution be denoted by ¢,; then it
can be written as

s=L2 2 o[ [Duem 5 deant G5 (50) an [ [Daemromin-sdea | (12)

Examination of equation (12) shows that, at the surface 2z=0, the potential ¢; is determined by the first integral expression
but that both integral expressions may give rise to normal velocity. In succeeding steps in this analysis it is shown that the
distribution functions D4 (£9) in equation (12) can be determined so that the first integral expression taken alone will exactly

satisfy the boundary condition of tangential flow for ¢.; that is (%?ﬁ) =Va. Also, any additional normal velocity that

=0
arises from the second integral expression can be canceled, to the required order, by consideration of additional doublet solu-
tions to equation (1). The problem of satisfying the boundary-velue problem for the velocity potential ¢. may thus be re-
duced to that of determining the appropriate distribution functions and additional solutions to equation (1).

In order to show that the first integral expression in equation (12) can be made to satisfy the boundary condition for ¢a,
the coefficient Vaa. appearing in this equation is first considered. If the analytical expression for tho coefficient am
(equation (8)) is multiplied by " and summed with respect to n, the result is identically Vea. This result may be shown
as follows:

Ve E 0= Va Zo (u:;:) —tar— Vagtotg i3z =Yy (13)
T
It is significant that this identity holds if only terms in & to any glven power are considered. For example, retaining
only terms including w to the fifth power gives

i R A A w’:z:2 “a:’ w’x tw’:c whr? w‘x
Ve [(1'—%’55 >t +z(ia+atr— + 22 -—+ R CIC N W

6 + 24 120 2 4

ﬁ("iﬁaf_? w"’a:) (24 zw’.r)+ (120)]‘V"‘ (14)
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Next consider the normal velocity at z=0 associated with ¢,, namely
Po) T . 2 = a1 (3 —1 m -1 = \’m-2
ri=(38),. = 5 m o o [ [ Dt G dr ant 53 e (ar) ol [Dsemermntaean] an

Examination of this equation and equation (13) reveals that the first integral expression on the right side of equation (15)
vields Ve exactly, provided that the distribution functions are determined so that the following integral equation is satisfied:

Ve

.o 0 g —Vart
Zlim s [ [ Duen S de dn=Vaz (16)

The kernel of this integral equation has the form of a steady-state doublet potential. The problem of determining the
distribution functions for this case is therefore analogous to determining distribution functions for certain steady-state problems.
The distribution functions for steady-state problems, at least for those involving conical flow, can be determined by a straight-
forward process. The mein details of this process are given in the appendix, where & method of solving equation (16) for a
triangular wing is derived and the distribution functions required to derive the velocity potential for this wing to the fifth
power of @ are given. It is to be noted that the method derived for solving equation (16) for a triangular wing may be
generalized to apply to various plan forms and to problems of satisfying the boundary conditions for various velocity
distributions.

From this point on, the analysis is restricted to the derivation of terms of the expanded potential involving @ to the fifth
power. The method of deriving these first few terms is quite general and can be used to obtain as many additional terms of
the expanded potential as may be desired. As previously pointed out, however, terms of the potential after the first few
become very unwieldy.

If the appropriate distribution functions are known for terms involving & to the fifth power, equation (15) may be writ-
ten as follows:

= Va—!—’w, . (17)
where
" . az =2 — _’-IE i"!x3 — i_SI  § .i—ﬂ ¥
=== 2lim 50 [ [ | (1 G- ST ) DR+ (15452~ 50 )ep (- E ) op,p Tep,p—
B i i
(._12312—123?)517 - ¥ D ] dtdn (18)

is the additional vertical velocity arising from the second integral expression in equation (12) involving @ to the fifth
power. In order to maintain the boundary condition for ¢., this additional velocity w; must be canceled. As pre-
viously pointed out this canceling, to a required order, can be achieved by considering other doublet solutions to equa-

tion (1). For this particular case consider relations ¢, and ;1 similar to ¢, (equation (12)) having the following forms:

w= g aip| o [ Do deart HEV (Y0 [ D mevmmasar | (198)
= aan o [ [Teen G deant 5 EO (B e[ [Bugmpvrsazan]  as

The vertical velocity distributions %, and ,, to the fifth power of &, arising from these expressions are

— Va. & raN(T[ B L 1T AN C R | — = 1w\ =1 (et t&tz\ = 1
!L‘l=°—-a11m—j(ﬂ) j;J [(1—'1.(01'— 5 +—6—)§D0E+<1w+w’r— 3 )E"’D[ R—(E—QT) EGD"E—

AT 20 a:.

-] —_— 1 52 . —_— e |

2 6D, 35 (1 —iB2)f DR — s s*ﬁ,R] de dy (208)
_ T, a3 m N\ — = =
w,=%§1‘;333—2;(%) [' f [(1—m)ypué+wgq)1%] dtdn (20)

In [these ‘equations the distribution functions Dy, D;, and so forth can be determined, as discussed subsequently, by the
method given in the appendix so that W, %, is identically equal in value but oppesite in sign to w,. When these funetions
are determined, the boundary condition for ¢, is satisfied by w,+%,+ %= Ve, which implies that the potential ¢, to the
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fifth power of @ is given by the sum

¢¢=¢I+$I+;l (21)
to this power of @.

Expressions for D, (n=0, 1, 2, 3) and ﬁ, (n=0, 1) are given together with expressions for other distribution
functions Dy (n=0, 1, 2, 3, 4, 5) in the appendix. In regard to the determination of Dy and D,, it may appear necessary, in
order to formulate integral equations for these functions, to perform the generally unwieldy integrations of the type

lia o [ [ Dutmprtiprn-sde dy @22)
= Q27 Jr

appearing in equation (15). In general, however, the information necessary for the determination of the functions D, and =5,.
can be obtained, as is done in the derivation of the functions D, in the appendix, by examining the values of these integrals

and their derivatives with regard to the parameter 6=% at some particular value of 6.

Returning to equation (21) and introducing into this equation the expression for ¢; (equation (12)) and the expressions
for ¢ and ¢, (equations (19)), each to the fifth power of &, gives for the potential ¢, to this power of @ the following result:

‘T!E.P bzf f gw{(l“""‘“"'“ e B (2M‘ et %)RJF(MM zﬁ;*)m]"'
oD, (34— =S T ) h (ot ars—aam) Pt B | -0 [ (55 -2+ B0 1
(Gt R o[ (5%~ wtmae P 1P (G55 R]“’D“[(mo)zf}f
oMsf’Eo[(l =2+ ) i~ (Gp e R]+2M»E‘DI[(W+ -5 —aar |-

—[< u;x R 2M=E°D’[( )R]+4M*E°D°[(1 %"’f)R]+4M.E°DL[(i5)§]} dt dn (23)

Since it may be shown, as in reference 8, for example, that

Pajim 2 [ [PaE7

=Vaz*D,(z,y)
equation (23) reduces, at 2=0, to

—2 ety = - -
¢,=Va|: 1—ige -2 102 et iatat )Do(x,y)-l-z(w+w z——f—;x—a w‘a: )Dl(x y)—z ( ety

2 6 T24 120 2 2
) Do~ (B4 52 B Dyte, o452 Dt )+ D,y (G-
S ) D 42 Gt S ) i o= ) D i
o(gagi— 3 Do)+ S0 Dite, ) | (24)

which, after the expressions for the distribution functions given in the appendix are substituted and the terms are
regrouped, may be written in the following simple form:

=VayOr*— i [Ay—iGze1— 5oz + 0 ") +ia%osz’ + 0o'y*e) +@4(asa'+ 0108’y ' + o'y — 6 ona'+
caBryr e+ a1yt (25)
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The quantities A, o1, and so forth in this equation are part
of a group of quantities A4, and o—,=P,—I—TQI’—,+% which are
defined in the appendix; these quantities are suitable for
writing the potential and expressions subsequently derived
for forces and moments in simple form. The quantities A,
P;, Q;, and R, are functions only of the product BC (ratio of
tangent of the half apex angle of the triangle to the Mach
angle) and are tahulated for some values of BC in table I
and are shown plotted in figures 3 and 4, respectively. The
quantities ¢;, which are functions of Mach number If and
the product BC, may be evaluated for particular values of
3 from the values of P,, @, and R, in table I or from the
plots in figure 4.

The quantities 4, and A, are the same, as should be
expected, as the parameters associated, respectively, with
constant angle of attack and constant pitching of triangular
wings of references 9 and 10.

Expressions for the potentials ¢ and ¢; can be obtained
by the method discussed for obtaining ¢., or they can be
obtained to the fifth order of @ by comparison and synthesis
from equation (23). After simplification these expressions
are

Pe= &{" O — P A —ia(o? — A8y — o —asf’y'2) T
to¥osrt+ oy e+ anBtyY) +a¥ o2’ + oBiyir+
owby =7 63\ (26)

o=k Ori—yt[A—ivre—o¥ o+ o YD+
i@ asxd+ o ytr) + o (oert+ 01082y 2+ 0118y )] 27)
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FIGURE 3.—Variation of the quantitles 4, 47, and :Ti as fonctions of pe=gC,

At BO=1 or c'=-;;, which is the condition at which the Mach

lines from the apex of the triangle coincide with the leading
edges of the triangle, equations (23), (26}, and (27) reduce,
respectively, to

2Va twr w?
(¢¢)sc-1=—ﬁ’_— Vi"—ﬂ’y’{l — 3 90 [(58 47—
r 3
(5—2MMBY 1+ g0y [(T+3302°—

(T—2) 8] +ﬁ§—gj—ﬁ (8311*+4143 12+ 63)*-

422N —9 M2 —3)F P r2 + (81— 361124 63)8% ] —

sa9ag0* (73638117 4-297)x°+2(46 M
253311 —207)6 2" HAEIL— 44 3L -H90)5 4]
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Figurx 3.—Contlnued.
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. Equations (28), (29), and (30) can also be obtained by going
(168 AL*—396 M_297),34y43]}_%‘1(¢5)x_1 (29) | to the limit BC=1 in the expanded potential for triangular
wings with supersonic leading edges (see, for example, refer-
ence 2 for results to the third power of ®) or by integrating
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the expanded potential of & unit source over the region oc-
cupied by the wing with 8C=1. Equations (28), (29), and
(30) therefore serve as a check on the results given in equa-
tions (25), (26), and (27), respectively.

For values of the product 8C such that £(?<1, equa-
tions (25), (26), and (27) reduce, respectively, to

=V a,tri—y? (31)
pa=an 22 —y?(xr—x0) (32)
oi=hCiri—y? (33)

These expressions are the counterpart of the potential associ-
ated with triangular wings of venishingly small aspect ratio
in steady flow (reference 11} and may thus be regarded as
the potential associated with a small-aspect-ratio triangle
oscillating in pitch and vertical translation in either sub-
sonic or supersonic flow, provided that @ remains finite. The
condition BC<«¥K1 is obviously satisfed for all velues of C
when M=1. However, as 1/—1, the valve of @ becomes
infinite and the expanded potential, as treated herein, be-
comes meaningless.

FORCES AND MOMENTS

As pointed out in the introduction, the veloeity potential
for the triangular wing can be used to calculate the aero-
dynamic forces and moments for other plan forms that can
be formed from the triangular wing by cutting the trailing
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-.008 74
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=012

-0141®

{e) He
Frorrr 3.—Conciuded.

edges so that they lie shead of the Mach cones emanating
from their foremost points. Sketches of different plan forms
thus obtained are shown in figure 5.

The force and moment coefficients desirable for most flutter
calculations are those that yield the spanwise variation in
these quantities or chordwise force and moment coefficients.
These coefficients are obtained by integrating the pressure
difference along any chord for the forces and the pressure
difference multiplied by a moment arm for the moments. A
convenient procedure in deriving these quantities is to intro-

duce the reduced frequency parameter %=k and to employ

the variables z, 7, and x; in & new sense as nondimensional
quantities obtained by dividing the old variables by the
maximum chord 2b of the wing.
The pressure difference between the upper and lower sur-
faces of the wing is
V 24, D¢
ap=—25 (55 524+ 34)

22 ,

1
~Tad]

{9}

"'00123.455.6.7.3.910
[+

(a) P;.
Fi;URE £.—Variation of the quantities Py, Q; and Ry as functions of gy
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The force, positive downward, at any section of any of the
plan forms shown in figure 5 may be expressed as

_ 4.2
2bJ Ap dx= 4pbj,/c(2b Se bt) dz
=—2PV{¢]" 2k f ¢dz} (35)
¥iC JylC

where z; has the following values with respect to the different
configurations shown in figure 5:

In plan form A

=1 (36a)
In plan form B .
:rl=1—;-i’;— . .. .(36b)
In plan form C
x1=1+%. e = - (366)

In plan form D

:r.,=1+-7% for 0§y§m<§£—0—1) l
8
n=g5gc for m(2bC 1) <vsg; 5

After the expression for ¢, given by the sum of equations
(25), (26), and (27), is substituted into equation (35) and
the integration is performed, the results may be reduced to
the form

(36d)

=—4pb Ve [ R LDyt TatiZ) | (D)

where
2A 33,3
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Finurk 4.—Concluded.

Ak,

i (81&[’0’05+aa—45’0’a.):|+
(38a)

16 Mk,

B - (6Ma— o)+

(15 M8 C o1+ 205+ 55*0%9] (38b)
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16 M4kt

16 M4ky
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(15 M4Cta10+ M2os— 5 MB2 20y — 15 M 2820 y—

Bie— 53‘020'3)—1-1—5350—4—- (15 M4B2CH 011+ 2 M 205+ 5 M282C% 0y — 15 M3 Cloy— 28201 53‘0’0‘3)]— 2z.L, (38c)
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In a similer manner, the moment (positive leading edge up) about the axis z=az, is

ﬂ[,:—4b’£7c {(r—rxy)Apdx

——4pTR? [%" (M;+i.—‘1f,)+a.,(ﬂs+iﬂm:, (39)
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= —g——a [ d2,2 41 16 M *k%r ¢ 16 M3k 2y2
M= T =P @I et gl (Mot )+ OO (gt gy 1OMEL
L 2
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In equation (37), for example, the quantity (L;4-iL,) is the
lift-force coefficient associated with vertical motion of the
wing. The real part L; is in phase with the vertical position
of the wing and the complex part L, is 90° out of phase with
this position. Similar definitions apply to the lift coefficient
(Ly+iL,) associated with pitching motion and to the moment
coefficients (M,+134;) and (24;+1iM,). The imaginary or
out-of-phase terms determine the aerodynamic damping
associated with different wing motions.

Although the expressions for the components of lift-force
and moment coefficients in equations (38) and (40), respec-
tively, are lengthy, they may be quite easily evaluated with
the aid of table I or the graphs in figures 3 and 4.

(8) Plan form A.
(b) Plan form B.

F1oURE 5.—8ketches {Nustrating dlfferent plan forma for which the force cqustions (38) and
moment equations (10) apply.

(o) Plan form C.
(d) Plan form D.

DISCUSSION

SAMPLE CALCULATIONS

In order to give some indication as to the general nature of
the spanwise distribution of the different components of lift
and moment coefficients, equations (38) and (40) have been
evaluated at different spanwise positions y for plan form A
(fig. 5(a)) for the following set of conditions: 8C=0.5,
C=1.0, 1,=0.6, M=+5/4, and £k=0.1. These sample re-
sults are plotted as functions of spanwise position in figure G.
The spanwise variations of the different components of lift
force are shown in figure 6(a) and the corresponding varia-
tions of moment coeflicients, in figure 6(b).

In figure 6 note that, for the particular set of conditions
for this example, the maximum numerical values of the com-
ponents of moment coeflicients A, 3, and Af; are positive
and are near the tips of the wing, whereas the maximum
numerical value of the component Af, is negative but is also
near the tips. It may also be noted that the integrated
(in spanwise direction) values of the components of moment
coefficient, or components of total moment coefficient, would
in each case have the same sign as the maximum value of the
corresponding component of section moment coelficient.
This result is not necessarily true in general, because changing
some of the parameters involved in the evaluation of the span-
wise distribution of some components of both force and
moment coefficients may change the distributions signifi-
cantly from those shown in figure 6. _

The fact that the total component of moment coefficient
M, is negative in the example just discussed shows that, for
the conditions of the example, this term would not contribute
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1% Lift force.

Flsuex 8.—Bpanwice distribution of components of lift force and moment coetBclents for
zom0.8. AC=0.5; Cml0; k=0.1; M= 5L

to the aerodynamic damping but, on the contrary, would act
as a source of energy for the oscillating system. This cir-
cumstance is significant since it leads to the possibility of the
single-degree-of-freedom torsional instability discussed in the
following section.

UNDAMPED TORSIONAL OSCHLLATIONS

The wing plan forms discussed herein, like two-dimensional
and rectangular wings, exhibit the possibility of undamped
torsional oscillations for certain ranges of Mach number 3
and location of axis of rotation z,. This fact is borne out,
as indicated in the preceding paragraph, by considering the
integrated (spanwise) value of the component of damping
moment 3f, associated with pitching or torsional motions.

877

®)
(b} Moment.

FiuRk 8.—Concluded.

The main results of this phenomenon can be obtained by
considering very slow oscillations so that only terms in
equation (40d) for M, involving the reduced frequency k
to the order 1/k need be retained. In this case,

43:12

7 PR Y
3, OEmV LS L) A A (309

4(2;}{“07 1) ﬁy,_l_‘i_;’_o (Ae—(@A—1)A) 2+ B’InAo]}
(41)
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For the triangular plan form (fig. 5 (a)) the integrated value
or total component of moment coefficient is

3?4=r,l§% {—@M21) Agt-3(2 M —1) A, +

4o [Ao— (22— 1) A |+ 4z (M —1)Ao}  (42)

In general, the condition of torsional stability or instability
depends on the sign and magnitude of M, in equation (42).
Positive values of A7, indicate stable conditions and negative
values indicate the possibility of torsional instability.
Between the stable and unstable conditions—that is, when
3, vanishes—a borderline state of unstable equilibrium
separating damped and undamped torsional oscillations exists.

The ranges of values of Mach number M and location of
axis of rotation z, for which 34, vanishes for some selected
values of C=tan ¢ are shown plotted in figure 7. The
regions inside the curve in this figure indicate instability.
The dashed curve, on which some of the solid curves ter-
minate, represents the locus of values of Af and z, for which

REPORT 1099—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

M, vanishes for the whole class of triangular wings with
" supersonic leading edges; that is, for triangular wings where

BCz 1 (sce fig. 5 of reference 2). It will be noted that 37,
vanishes for values of z, ahead of the root %chord position.
It will also be noted that, as the vertex angle e=tan~* C
decreases to 30°, the range of values of Mach number for
which M, vanishes decreases sharply.

In conclusion, investigation of equation (42) shows that,
for a given value of the reduced frequency &, Mach number
M, and location of the axis of rotation xo, the magnitude
of the damping coefficient 34, generally decreascs as ' de-
creases and, consequently, torsional instability is less likely
to occur with slender triangles than with wider triangles.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LaxcLey FIeLp, Va., June 19, 19561,
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APPENDIX

METHOD FOR DETERMINING DISTRIBUTION FUNCTIONS

In this appendix & method of obtaining the distribution functions is developed in detail. Expressions for the distribution
functions required to drive the velocity potential to the fifth power of the frequency of oscillations and & set of functions
useful in writing the expression for the potential in concise form is given.

As indicated in references 9 and 10, where the triangular wing is treated for constant angle of attack and for constant
rolling and pitching motions, a convenient form of the velocity potential corresponding to a distribution of vertical velocity
proportional to x* is

et 2. {° F.(a)a'j

‘l'ba

Eﬂ-'r:dE (Al)
NGy — o2
where ¢ is the slope of & ray passing through the vertex of the wing (n=c%), & is the least value of £ that causes the

denominator B in the integrand to wvanish, and F.(o')=% D.(tn) is the distribution funetion that is to be de-

termined so that

@aeo=(5E2) =2 (42)

In equation (Al), the integrand is noted to be singular at the limit £&=§. A form of the integrand which avoids this
difficulty is obtained by making the following change of variables:

’Z=TITE (1—pg%6)

N= 1— Bz z‘\/(s °')2+—(1 32‘7’)

(A3)
g=4
r
r=cosh™! Q;E )
where 7 is the new variable of integration. With these substitutions equation (A1) becomes
12 _Falo)
D= 797 -cVI—plat (q-—-N cosh r)*73dr (A4)
and the corresponding expression for w.=( baqi,.) » which is an integral equation for Fi(s), is
WU Seml
_
1. "¢ F, sl N e ntl
iCe=— 1113% {—-ﬁ’(n-l—fé)J_c(l__ﬁ—(,?z),,—,J; YN (L%—cosh ‘r) cosh 7dr+4
34 z(n+2)f l(O')dﬂ’ Mh-l:{_‘_\r.—z (l—-COSh )'(l_l_n cosh )COSh d
Z (1 Bza'z)“’ 4 A:r T AV T TaT
=z* (A5)

In this equation the value of w, obtained by performing the indicated integrations and then going to the limit z=0 is the same

as the value that would be obtained by first going to the limit and then performing the integration but neglecting singularities,

pointed out subsequently, that arise when the value of ¢ approaches the value of 6. Making use of this fact reduces the
879
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celeulations involved and simplifies the integral equation for F,. Thus passing to the limit gives for equation (A5)

1.4 n
Wo—— ﬂz(n‘['z)fc;(ng(gz)fz;;nﬁm NnNu (%u_cosh 1‘) +ICOS].1 rdr

—o (a8

where N, is the value of N at z=0. The requirement that the normal velocity be proportional to z* and independent
of 7 implies that all derivatives of equation (A6) with respect to ¥ or § must vanish or that F,(s) must be so determined
that the final value of the integral in this equation be independent of §. The requirement that all derivatives of equation
(A8) with respect to ¢ vanish leads to other equations for F, and, after n+1 such differentiations, the equations
acquire forms for which solutions are known. The value of F, can then be determined from these known solutions

K,
by evaluating each of the derivatives dJ ;Z“ et any arbitrary value of 4 in the range —C<8<C as follows:
The Kth derivative of w, with respect to 6 (equation (A6)) gives the following integral equation for F:

K, 2, c l.‘f.lsll'I
(fie? B(n—l—2)J c(lF gz)d;)rs”f (1 B " (g—Nocosh T)"HCOShT‘I’(T)d’ 0 (&7)

where

) go+cosh + \E K(n-[-l)L Bo+cosh  \E-1 __
é(f)—(n-[-l—K)! N, cosh f—g) T t2—E)I\N, cosh r—¢ Nyt

KE—-1)n+1D/ 8otcosh r _ -
n+8—K)! N, cosh +— ) No?. . F (- DFEINF

When K=n-1, the expression for (r) may be recognized &s being a binomial expression, namely
_ Bo-+cosh 1 )""‘1
)=+ DU N eosh —q N,

_ (a+DBEoNetg*

(_‘Nu)ﬂ-H(q'—No cosh ‘J’)"'H‘-1
- (rt1)lzn?t (A8)
~ (—No)"*(g—N, cosh r)*+!

Thus the integral equation corresponding to the n+1 derivative of w, is
VI

dotly,  (—1)*Hin4-2)1gnisyeete fc F.(0)de fm*;rﬁ cosh + dr
de”'H T —0N0ﬂ+2(1_520'2)n-[—g 0
(=1 n+2) la*/1— B fc F.(o) .
— = N e do=0 (:_19)

Further differentiation of w, leads to other equations involving infegrals similar fo that in equation (A9) and, as will be seen
subsequently, is not necessary for the determination of . The singularity at o=@ in equation (AQ) is a result of going to
the limit =0 after equation (A5) and, as previously implied, is to be ignored.

Consider the following equation similar to equetion (A9): '

[© 2% 0 (A10)

—c(f—a)"ts .

It is known by analogy with problems in incompressible flow and may be shown by direct substitution and reduction that
this equation is satisfied for any value of n (=0, 1,2, . . .) by the function

fo(a)=yC?—o* (A11)

K.
~ This function also satisfies equation (A9) for any value of n and satisfies equation (AT) for all derivatives %beyond
the nth derivative. A more general form of solution to equation (A10) may be shown to be

fo=o™/OP— o2 ' (A12)
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where m is an integer and m <n. The validity of this solution follows, since _

Z 1g=-
o8- (=" =33 e (—oY (A13)
and .
™ O—a2 & mlen—r \T—o

(0— )= +3 _a (m—r)lrl (—og)=—7*8 (A14)
Each term of the summation in equation (Al4) is found to have the form of the integrand in equation (A10), from which
the function (A12) is concluded to satisfy equation (A10) and equation (A7) for all values of K >n.

From the foregoing discussion and consideration the distribution function F,(¢) may be umquely determined in terms
of expression (A12) as follows:

Consider the expression -

Fu(o)=Bofo+Bifi+ . . . +Bafa (A15)

where the coefficients By, By, . . . B, are constants that are to be determined.

Each term on the rlght of equatmn (A15}) is noted to satisfy equation (A7) for all derivatives beyond the nth and a
total of n+1 parameters is to be determined. If expression (A15) is introduced into equations (A6) and (A7) and the indi-
cated integrations in equation (A6) and in equation (A7) for K=1, 2, . . . n ere performed, n+}1 linear equations are
obtained in By, B;, . . . B, from which these constants may be determined. -

The integrations with respeet to ¢ in equations (A6) and (A7) are in general difficult and tedious to perform;
however, as previously pointed out it is only necessary to perform the infegrations for some particular value of § in the
range —O0<0<C. The integrals have their simplest form when 6=0 and the integrations can be made for this value of ¢
by reductions and use of formulas in reference 12.

The functions D, and D may also be determined by the method discussed for determining the functlons D,. The

conditions to be satisfied by D, and D,, however, are determined by the velue of w,, equation (18), and its derivatives
with regard to 6 at §=0.

The distribution funetions D, (n=0, 1, 2,3, 4, 5), D, (n=0, 1, 2, 3), and 5, {n=0, 1} calculated by the foregoing
method are as follows:

Dy=A,C*¢—7* Eﬁ=(Zﬂ+Zl 5;;7 CE—q?
Dim b NOF=7 D~ (ac+3,58) Jor—7
22 A 7
— «
Do——(Az‘['As BEg ) cCE—y? (A4+A5 i —+A4, %‘) ~OE—o?
2 _ —
D—=(4c+ 4, L) \CF=7 D=(Z+4Er+4.8Y) ov—7
—_ = = Riny¥ ——
D4=<A5+A7 By —i—Ag E“ \'0252—712 Dy= A0+A1 5; + A4, %’—) VO E—qy?
2 2 .. = =
D5=(A9+A10 B$—2+Au BE:T )‘\':0252_712 D1=<Aa+ BE'? +Aa ﬁ u ) 0252

where, with the notations

, (n+2)8? (+¢ g™ C?—o* 0P [eosirige ar iy a1
Wﬂ,m= Trx") f_c Ellﬁzcz)alz dcrllm 30" \ Ny (———cosh T) cosh r dr

JE— 2 +C  m (2 &S
Ws=t J' VO ;o lim & [N (y— N, cosh )+ [2g—(n-+4) N, cosh 7] sinh? r dr

T 4 1—52%02 -0 W
and
r— ﬂi costrt L.
R f_c VO TP do lim o f = Neq—N, cosh )"+ [4g—(n+6) N, cosh 7] sink* r dr

{Note that the above expressions will vanish identically unless p and m are either both odd or both even.)
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the A’s are given by the following equations: AW o AWy k- A, T = AT 0 AT, l
Ao=-ﬁ;& - - - A Wioll-‘Z Wi+ AW = ATV o+ 4,17
A 1 - 0+AsI 2+A0W4 —4, H 0+Au“ra§.25
S . . o

1,0 i e +z H,vo__l_;_i 1o ______ﬁi_o ﬁ'u + 4,772 .+ _lﬁ.'v'o.
A3W20+A3W&2=1 0 4,0 1 4,2 2 4,4 6 a0 [+] A 2
Aan,o+AsW§,s=0} Zoﬁfioﬂ—zlW{,ﬁiﬁ-’i,:-—% Wé u+tToI_rl§.o+ —JT;:.:
Ao+ AW =1 E.,W:,o+iWzs+21n-’:,‘=—% Whot Lot 474,
A(W%,o‘l‘AsW;.g:O _ A —_— . e
AW ot AW ot A8, =1 Aot At AT o=~ Whoh LI+ T2,
AWeot Ay Wit AW =0 AWt AWt AP = Tk LT3,
AWiot A Wi+ 4 Wi =0 = = = :2, = Wi A,

: AW o+ ATVE 4+ AT =—=2 T 1, -+
AQWS,.,—}—ANWP.,,+AHW2,‘=1 sWho A5+ 4,15, ) Lot AW ot2
Ae“’;o+A1oW§,s+AuIV§,4=0} where, with 8C=p,,

A9W7§,0+A10W§,,+A11W§,.=0 -’g c,=_E'
ZOTVg,o+X1Wg.2=AoW3.a Hr — P F’EI;(I —f)Pog)E, .
- —_ —p
T Wiot B Wia=A4, ’
g = (B0 =8pOF + (21007 +600) E
stg.o'{'zswg,z:Ale.n 2(1—poY)
ZsW§.0+Z: H’:,s=A1W§.o u7g2_2Po4F'—(Pa’+2§:4)E'
o 2132(1—730 i
24W72.0+25W2.2+;15W2.4=A:m.0+A3Wg.s 3 H_,
A4W2,0+A5W3.5+A0W2.4=}12W;,0+A3W§.s C
ZAW:.O'*'AS t,s+ZeW:.4=AzW§,o+A3W§,, T 7;==(_5P0 3902)F’(T(6 2)];013 +2Po‘)E’ -
— Pg
we 2700 —81ps'+12p)F" +(6 —55p5"+65p¢' —24p 5} B’
o 8(1—p¢’)®
7o Oodt—oF' —(8pd+Tpid—20NE"
2 68%(1— po’f
Wio=S8 s,
W2,— _(2p6°+90¢*—3p)F" +(6— 15po’+5po —4pE" )
(1—'1902)8
72 (580492054 7200 —20p )"+ : (81170 + 202001495+ 400 o
8(1— — P
e (17 ¢ —2P08+P08)F’—(4P02+1890 —8906+2P“B)E' =
SFA—py
We = _(8n¢ +8P08)F'—(Pn‘+ 14}_706‘5‘ Poa)E’ = i
864(1—po?)*

2
s om0k W2,

(6002 —380p5'—30p8+ 605 )F —(12—39p,"+6p0* —390:°+12p5) £’
2(0—po)t

H’z_ =
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I;’E 4=(3Pa4—690‘+ 51 POB)F,_(GPQ’_24PQ‘+ 54[)08‘{" I?pox)E'

26%1—pod
r." 2é€ W
Wi ’_F
W, (168[10 —276pe"+216p5*—60p N F' (24 ps* —351pof+ 606 pot— 447 po? - 120) E'
(l—Po
o (4008 —833 po*+994 pot —553 pod+ 120419 F7 +(40 —859 po2 - 1910p*—21 155"+ 1136 5" —2400,') E’
5.0

40(1 —p¢*)°

e ,— _{(115p8—2p8+19 po* — 40 )F’ —(20p6*+ 151 ps* — T4 po"+39p° —8po' N E’ -
403’(1—'5’02)5

ey _(55p8°+T4ps*—po' )" —(5po*+108p0°+ 170" —2p,' ) E”

10841 —po*
w2, “gf we,
e (820 —35p0+ 11206 +40 po'— 8 pe)F'+(12 —47 oo’ —22p0*—127 ps*+ 726’ — 169 D E”
= H1—ps)
W= _ (Bpe*—2p"+ 131 p* — 40"V F' —(6 ' —31p*+ 108p5°+53 po*—8po' Y E”
2841 —po)®
I rg'o_l ('946 HT
s, 66‘3, Wi,
H'* (‘)4Pom+ 50990 —46"Po'+273pu —60pf)F’-|—(120 —b56 190"[’ 10"6[’0 969pq°+4:8pg’—48p01°)E’
(1—pd)*
o —_poF —p’E’
>e 21—pd”)
e — B’ —E)
oo (1—po)
T o= (B pe*—po M —(4ps*—2p ) &'
ne B(1—p??
—, 2
Who=—28 3
T (12p—7ps*+3p)F’ —(19p — 17 po*+ 6 ) E”
24T 7
T e 306 T 5000 F — (T po' + pd) E
i 248%(1— po*)?
T2 132[(7P02+Po‘)F’ (2+7Pu,—Po‘)E']
Wi.=
>0 2(1—pd"P
T2, — (po*+Tp)F’ + (08— 7 pe*—2pNE’
e 2(1—poP

7 P 8505 +3p)F —(1+7pNE"]
&0 (1‘—'Pu2)s
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B3¢ —Tpe*+120)F ~(8—17p8+ 1900 E|

"
Wie= i
T = (80p =44 ¢!+ 440 — 129 )" — (107 ps*— 126p4*+91 pf—24 p ) E”
v 12001 —p )
o .o —(18p0* 184 00°— pe)F’ —(38p¢* + 12"~ 2pH E’ -
i 120871 —pd)t
7 BB3p8+ 14pt b p)F —(64-460° —6p0'+2pHET . _
.0 ST,
T2 e (8P’ 445 —2p ) +(3pP—34p¢* — 21 pa’ +-4p)E’ | _
61— poty"
I '§.o=—W:_.,
T;.Z___"_‘I ':‘g
— 2
Vg.u:%‘ IVg,z
?2 =_352[(902+Po4)F’—2p0’E’[ B
a.0 31— p o)
——1 4
s n=%,ﬁ* 1 72.2
= 2
M o=28 Wy,
=, 128 —
Ho=— (_jrf W,
Wt o=—3T7%,

Combinations of these functions useful in writing the potential in concise form are as follows:

where

R
0’1=P:+%;2+E[—’4

P1=x'1o""A1 QI_O
P2=r11-—112 Q2=0
Py=1 (Ag—241+ ) Q=—5
1’4=:é_=* Q‘=_é21 .

1 R
Py=7 (do—3.414+3.4,— A) Q=—5 (do— 42)

Pa=% (3 Aa— As)

P7=71; (A1—2A4:+ Ay

P, =‘% (2A3—A5)
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1. — _ .S
P,=—2% (A—44:+64.—4A,+ 4y Qa'——'—z (dp—24,+4) Rn=£i—o
Po=gy (64s— A+ A) Qu=—g (L—24+,) Bio="g
4 4, A,
Pu=ﬂs‘ ° Qu= .—%E : Rﬂ:%:
Py 1—;—0 (Ao—5.4,+10.4,—10 4,454, ;) Q= ——11—2 (Ao—34,+34,— ;) Ru=i (L—4,)
1 - 1 ,— —_ _ = lr= =
P13=m (104‘13_ 10A5+5A7—A10) Q13= —1_2- (A1_3A3+3A5—A3) RL’!=I (AI—Ai)
1 ) l — —_ 1 —3 ==
Pl-£= 150 (QAS—A”_) Q14='—ﬁ (3113—[19) R14=Z (Az—/-‘ls)
1, — —
P,5=% (Ad—3.42+34,— A  Que=—5 (A—4L) Bi5=0
p 1 | L(T,—1) | Ryp=
=g (84;—34d;— A7) ) Q15=—§' Ay—d; 15=0
Py= "'%E o Q17='? Bi:=0
18=ﬂ (A1—4:“12 1 6:14;—4146"_1'19) Q= 1 (Az_"A*_I_A") RN:T
1 e o4 iy
P;g=ﬁ (Ap—4A:+6A4;—44,) Q19=—'Z (As—2d,+ ) R19=%
1 Loog_ 7 A,
on=ﬁ (An—4dg) Q20=Z (24,—4,) R20=%
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